Tamar Seideman Professor of Chemistry; Professor of Physics and Astronomy

Research Interests

The Seideman group is engaged in theoretical research at the broad interface between chemistry, physics and material sciences. Specific topics of interest include:

  • coherent control and coherence spectroscopies in isolated molecules and in dissipative media;
  • quantum transport, molecular electronics, current-driven nanochemistry and molecular machines;
  • ultrafast nanoplasmonics and light manipulation in the nanoscale;
  • the interaction of matter with intense laser fields;
  • photomanipulation of external molecular modes;
  • mathematical method development.

Of particular relevance to the Applied Physics Program is the group’s research on molecular nonadiabatic alignment by moderately intense laser pulses, an approach that evolved, during the past decade, from a theoretical dream1 into a rich field of experimental and numerical research and the topic of hundreds of publications.Currently we are particularly excited about the application of laser alignment to coherently control electric transport in the nanoscale,3  and about opportunities in solution chemistry4 and in attosecond physics.5

Selected Publications

S. Ramakrishna and T. Seideman, Rotational Wave Packet Imaging of Molecules,Phys. Rev. A 87, 023411 (2013).

M. Kornbluth, T. Seideman, and A. Nitzan, Light-Induced Electronic Non-Equilibrium in Plasmonic Particles, J. Chem. Phys. 138, 174707 (2013).

M. Reuter, N. Boffi, M. Ratner, and T. Seideman, The Role of Dimensionality in the Decay of Surface Effects, J. Chem. Phys. 138, 084707 (2013).

B. Ashwell, S. Ramakrishna and T. Seideman, Laser-Driven Torsional Coherences, J. Chem. Phys. 138, 044310 (2013).

M. Artamonov and T. Seideman, Predicted Ordered Assembly of Ethylene Molecules Induced by Polarized O-Resonance Laser Pulses, Phys. Rev. Lett. 109, 165408 (2012).

R.M. Lock, S. Ramakrishna, X. Zhou, H.C. Kapteyn, M.M. Murnane, and T. Seideman, Extracting Continuum Electron Dynamics from High Harmonic Emission from MoleculesPhys. Rev. Lett. 108, 133901 (2012).

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, Collective Plasmonic-Molecular Modes in the Strong Coupling Regime, Phys. Rev. Lett. 109, 073002 (2012).

M. Reuter, M. Hersam, T. Seideman and M. Ratner, Statistical Signatures of Transport Mechanisms and Cooperative Effects in Conductance Histograms, NanoLett. 12, 2243 (2012).

N. Jiang, E. Foley, J. Klingsporn, M. Sonntag, N. Valley, J. Dieringer, T. Seideman, G. Schatz, M. Hersam, and R. Van Duyne, Observation of Multiple vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy, Nano Lett. 12, 5061 (2012).

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, Infrared Plasmonics with Indium Tin Oxide Nano-rod Arrays, ACS Nano, 5, 9161 (2011).

M. Reuter, T. Seideman and M. Ratner, Molecular Conduction through Adlayers: Cooperative Effects Can Help or Hamper Electron TransportNano Lett. 11, 4693 (2011).

R. Jorn, J. Zhao, H. Petek and T. Seideman, Current-Driven Dynamics in Molecular Junctions. Endohedral Fullerenes, ACS Nano 5, 7858 (2011).